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Abstract
We describe in this paper the likely physical mechanisms that underlie the
enormously enhanced electron emission observed from certain carbon field
emitters. Our key ideas link the enhancement to dynamic resonant tunnelling
and to the image interaction in a more general form than is usual. We have
recently proposed a giant enhancement of the dynamic surface potential that
could explain the anomalously large field emission currents observed in carbon-
based emitters with predominantly non-Fowler–Nordheim I–V characteristics.
Here we report further results on this effect which can best be described as an
image-induced dynamical resonant tunnelling phenomenon, and in particular
the applied field dependence of the inverse potential enhancement factor κ(ω),
which seems to be a hallmark of such systems. The latter is studied by a
consideration of the non-linear second-order susceptibility γ (ω)which couples
the static applied field to the dynamic field. We derive the criterion for this
mechanism to operate and demonstrate that it does indeed provide the linear
field dependence of κ(ω) found in our earlier work. We further provide a link
between γ (ω) and other microscopic parameters of the surface plasmon model,
notably the anharmonicity coefficient, via a Duffing oscillator model. Through
the use of a one-dimensional fluctuating barrier model with a self-consistent
approach, we further assess the significance of other non-linear damping effects.

1. Introduction

We describe in this paper the likely physical mechanisms that underlie the enormously
enhanced electron emission observed from certain carbon field emitters. Our key ideas link
the enhancement to an image-induced dynamical resonant tunnelling phenomenon in a more
general form than conventional theories. In a recent work [1] we have identified what appears to
be a dynamical Schottky barrier lowering mechanism, operative in the case of carbon systems,
that profoundly influences their efficiency for the field emission of electrons, most unlike
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normal metal surfaces [2, 3]. This mechanism, while not fully understood at that time, has
allowed us to model the field emission of certain carbon-based field emission systems such as
graphitized carbon nano-tubes (CNTs) and PFE emitters, that lie outside the scope of traditional
Fowler–Nordheim (FN) theory [1]. Its intriguingly excellent agreement with experimental
data stimulated further thinking which this paper hopes to clarify. In our earlier work we have
noted that the observed currents are too large for FN theory [1] and could not be fixed by
minor adjustment of the local field enhancement factor β, such as the value of β = 350 as
used in [1], or higher such as β = 5 × 103 as used in [4–6]. The major problem with such
a simplistic β factor theory is that of energy conservation. An electron emitted under such a
local field (with β = 350 and V = 20 V µm−1 say) would gain a rather substantial energy of
0.7 eV (which must come from somewhere) by merely traversing a microscopic distance of
1 Å from the surface. With a β = 5 × 103, this increases to a highly unreasonable energy of
10 eV, which makes a field enhancement factor theory somewhat dubious on its own.

In our earlier work [1] we gave a soluble model which allowed for a lowering of the barrier
for emission for a subset of electrons near the Fermi level. The model was phenomenological
rather than deduced systematically from any obvious physical assumptions. Its intriguingly
good agreement with experimental data, and a closer examination of the proposed inverse
potential enhancement factor κ , prompted us to suggest that the underlying mechanism is a
dynamic one. There we also found evidence that the non-linear dynamic dielectric properties
might be involved and we called for an urgent formulation of time-dependent quantum
tunnelling theory of field emission. In fact our model was motivated by the fact that the
substantial barrier reduction needed (from eVs to meVs) to obtain the order of magnitude
tunnelling current found in carbon emitters can only make sense dynamically. Any static
model with such huge barrier reductions would lead to a massive thermionic current at room
temperatures (JT ∼ AT 2e−φ/kBT ≈ 107 A cm−2), which is clearly not observed. In this
paper we shall report on our results, which show how an image-induced dynamical resonant
tunnelling model can lead to the features found.

The conditions needed to give meaning to our model of enhanced tunnelling demand
certain features of dynamical screening response to a tunnelling electron at the surface. Whilst
we have to make several working approximations, these do not appear to be exotic in any way,
although there are still important issues that will require further extensive studies which this
work should motivate. More importantly, we have now been able to identify key parameters
in the model that make carbon emitters different and do not behave in the FN-like metallic
way. As a consequence we find that there may be opportunities for surface engineering to
optimize field emission or indeed exploit the surface-plasmon features found for other device
technologies such as THz generation. The reader should first bear in mind that, throughout
this paper, the electric field F will often be compared with the characteristic Schottky barrier
field Fb = 694ϕ2 V/µm (eV)−2, where ϕ is the work function in eV.

Sections 2 and 3 derive expressions for the electron self-energy, the image interaction,
and the tunnel current. The derivations, which are more general than usual, include working
approximations that are discussed in detail. The generality is especially important when the
Fermi energy is close to the surface plasmon resonance, the regime that makes possible the
enhancement of the tunnel current. Non-linear terms are a further important factor,coupling the
static applied field and the dynamic field due to the tunnelling electron (section 5). Experiment
suggests that such non-linear terms are large for carbon systems; in principle, they can be
measured by THz spectroscopy.

In three places we shall use simple models to get to grips with issues that can be both
complex and subtle. Section 4 uses the classical Drude model to understand the dynamics
of resonance and derive an effective Q-factor for the resonance. Section 6 exploits the
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Duffing model, showing that the non-linear susceptibility is related to the anharmonicity of
the surface plasmon. In section 7, we adopt a simple (fluctuating barrier) model to assess
the self-consistency of the dielectric function, and find that enhancement through the non-
linear coupling exceeds suppression from damping. The Drude model indicates that resonant
tunnelling is unlikely in metals, for which collision times are too short. For the carbons,
resonant tunnelling appears possible.

These ingredients are all brought together in section 8 to give an expression for the tunnel
current (equation (88)) in terms of the non-linear coupling γ (ωs), the work function ϕ, the
electron affinity χ , the Schottky barrier field Fb (which itself is determined by ϕ) and the
applied field F . This final equation is consistent with our earlier phenomenological model,
and suggests that giant electron emission is likely to need low electron densities (if true!). The
significant differences between the carbons showing enhanced emission and metals result from
three factors: the closeness of Fermi energy and surface plasmon energy, the large non-linear
coupling, and the relatively long collision times in the carbons.

2. Time-dependent theory of field emission

In this section we shall formulate precisely the time-dependent Schrödinger equation for the
tunnelling electron interacting with its own image potentials. The exact one-particle non-
retarded Hamiltonian Ĥ which provides the time-evolution of the electron’s wavefunction
during the tunnelling process can in principle be written down in the following way:

ih̄
∂ψ(r, t)

∂ t
= Ĥψ(r, t), (1)

where the operator Ĥ is given by:

Ĥψ(r, t) = − h̄2

2m
∇2ψ(r, t) + V0(x)ψ(r, t)− e

2

1(r, F, t)ψ(r, t)

− e

2

∫ t

−∞
dt ′
2(r, F, t − t ′)ψ(r, t ′). (2)

Here we have as before:

V0(x) = −µ�(−x) + (ϕ − eFx)�(x), (3)

in which the zero of energy is taken as the Fermi level (see also equation (1) of [1]), where F
is the applied static external field, �(x) is the Heaviside step function, µ = (χ − ϕ) where
χ is the electron affinity and ϕ is the work function. In the above we have explicitly denoted
the external applied field F dependence in the induced image potentials
1 and
2, which we
shall suppress from now on for brevity, except when emphasis becomes necessary. Note that
equation (3) can be modified to incorporate intermediate states quite easily, such as a shallow
well with possible resonant levels. In this case the first term can be modified to incorporate
this feature so that:

V0(x) = −[µ�(−x − as) + µs�(x + as)]�(−x) + (ϕ − eFx)�(x), (4)

where as is the width and µs < µ is the depth of such a well. Such refinements do not alter the
picture in a significant way, since its effect is to redefine the equilibrium chemical potential
and so we will not look into this modification further. We must stress at the outset that in
view of the time-dependent interactions the wavefunctions ψ(r, t) are in general complex.
Only stationary states can have real wavefunctions ψ(r, t) (up to a trivial constant of unit
modulus) [7].
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2.1. Image potentials and self-energy

At this stage the induced image potentials 
1 and 
2 remain undefined1. To do so explicitly
would require a full consideration of all the many-body interactions, such as electron–electron,
electron–plasmon and electron–phonon, etc, to which the tunnelling electron can couple.
Nevertheless, in the many-body language we can, following Jonson [8], formally write these
potentials as:


1(r, t) =
∫

dr′
[
�1(r, r′, t)ψ(r′, t)

ψ(r, t)

]
, (5)

where �1(r, r′, t) is the instantaneous part of the non-local self-energy. In the same way:


2(r, t − t ′) =
∫

dr′
[
�2(r, r′, t − t ′)ψ(r′, t ′)

ψ(r, t ′)

]
, (6)

in which �2(r, r′, t − t ′) is the non-local and non-instantaneous part of the self-energy.
Without going into the many-body Hamiltonian, there are some general considerations that

can be made, which motivate the form of equation (2) and define various symmetry relations.
The operator Ĥ must be Hermitian in order that the time-evolution of the wavefunction is
unitary. This implies first of all that the exact interaction potential 
1(r, t), whose origin is
electromagnetic, must be real:


1(r, t) = 
∗
1(r, t), (7)

or alternatively, the self-energy�1(r, r′, t) satisfy the Hermitian property:

�∗
1 (r, r′, t) = �1(r′, r, t). (8)

However, the non-instantaneous potential �2(r, r′, t − t ′) cannot be real in general. Both it
and the wavefunctions must satisfy the following convolution Hermitian property:∫ ∞

0
dτ ψ(r, t)
∗

2(r, τ )ψ
∗(r, t − τ ) =

∫ ∞

0
dτ ψ∗(r, t)
2(r, τ )ψ(r, t − τ ), (9)

with a corresponding relation on the self-energy:∫ ∞

0
dτ ψ(r, t)�∗

2 (r, r′, τ )ψ∗(r′, t − τ ) =
∫ ∞

0
dτ ψ∗(r′, t)�2(r′, r, τ )ψ(r, t − τ ). (10)

For this reason we have thus separated the instantaneous and the history-dependent terms,
in anticipation that the theory may be cast in the form of spatial and frequency dispersive
dielectric functions which must satisfy causality requirements. It must be noted that the above
symmetry and causality requirements are not obtained for free. Any approximation scheme
that does not satisfy one of these properties violates unitarity and will ultimately lead to errors
in the calculation of the tunnelling current (see below). In a full many-body theory, a necessary
(but not sufficient) condition is the requirement of so-called Ward–Takahashi identities [9].
For our purpose, the complex structure of 
2(r, t) implies that its physical property is of
quantum origin and therefore cannot in general be derived from classical electrodynamics
alone, for which all electromagnetic potentials are real. This observation appears to agree with
the sentiments of Mills in relation to inelastic energy losses [10]. Indeed equation (10) shows
that the image potential equation (9) contains hidden quantum dynamical information that are
imposed on it by unitarity.

1 Note that we use the term potential in a general sense and not in the canonical sense of classical mechanics. This
does pose deeper problems as to whether our theory can be derived through a Schrödinger canonical quantization
procedure, which we shall ignore in our work.
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Now we can utilize partial Fourier transforms so that all functions in space and time can
be written as2:

ψ(x,R, t) =
∫

dK
(2π)2

∫ ∞

−∞
dE

2π h̄
e−iEt/h̄ eiK·Rψ(x,K, E), (11)

where all bold vector quantities belong to the perpendicular y–z surface plane, and the
usefulness of defining the zero of energy at the Fermi level as in equations (2) and (3) becomes
apparent. Then the time-dependent Schrödinger equation becomes:

Eψ(x,K, E) =
(

− h̄2

2m

∂2

∂x2
+

h̄2 K 2

2m

)
ψ(x,K, E) + V0(x)ψ(x,K, E)

− e

2

∫
dK′

(2π)2

∫ ∞

−∞
dE ′

2π h̄

1(x,K − K′, E − E ′)ψ(x,K′, E ′)

− e

2

∫
dK′

(2π)2

̃2(x,K − K′, E)ψ(x,K′, E). (12)

Here 
̃2(x,K, E) differs from
1(x,K, E) by being a one-sided Fourier or Laplace transform
thus:


̃2(x,K, E) =
∫ ∞

0
dt eiEt/h̄
2(x,K, t). (13)

Then the reality of the image potential
1(x,R, t), see equation (7), requires that the generally
complex function
1(x,K, E) satisfy the symmetry:


∗
1(x,K, E) = 
1(x,−K,−E), (14)

whereas no such symmetry exists for the generally complex function 
̃2(x,K, E). However,
the latter has various analyticity properties for the continuation to the complex E plane as
required by causality, namely the function 
̃2(x,K, E) is only analytic in the whole upper
E plane with a branch cut on the real axis, below which it can have singularities [11]. This
property is not shared by
1(x,K, E) on the other hand,which can have singularities anywhere
in the complex E plane, except at the origin. However, one must note that the physical input
particle energy E as well as the final particle energy Ef as measured at the detector must both
be real. Therefore, as mentioned before, any approximate many-body derivation of the image
potentials should in principle preserve the above symmetry and analyticity properties. The
analogous relation to equation (9) in energy space can also be derived from the definition of
the Fourier transforms which leads to the convolution property:∫ ∞

−∞
dE ′ψ(r,−E + E ′)ψ∗(r, E ′)
̃∗

2(r, E ′) =
∫ ∞

−∞
dE ′ψ∗(r, E + E ′)ψ(r, E ′)
̃2(r, E ′).

(15)

In deriving the above result, the energy integration contours are closed in the upper-half plane
in an anti-clockwise manner for the RHS of equation (15) (and in the lower-half plane in
a clockwise manner for the LHS), as required by the analyticity property of 
̃2(x,K, E)
discussed above. Note that, for real 
∗

2(r, t), equation (9) can only be satisfied for real
wavefunctions ψ(r, t) and accordingly equation (15) with wavefunctions of the symmetry
equation (14), i.e. for stationary states. We shall later utilize the concept of quasi-stationary
states in order to make further progress.

2 Unless otherwise stated to avoid ambiguity, we shall use the usual physicist’s notation for Fourier transform pairs
through their arguments and reserve the tilde for later use to denote a one-sided transform.
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2.2. Elastic and inelastic scattering

One final important observation before continuing is to note that the third term in equation (12),
which contains the energy convolution
1(x,K, E − E ′), is the only term in the Schrödinger
equation that leads to inelastic scattering for E �= E ′. As a result the Schrödinger equation in
energy space couples to all available energy states and in particular leads to real excitations of
the various modes that are accessible to the tunnelling electron as mentioned earlier. However,
so long as the unitary conditions are satisfied, it can be shown that the tunnelling current is
given by the usual expression:

J(r, t) = − ieh̄

2m

(
ψ∗(r, t)∇ψ(r, t) − [∇ψ∗(r, t)]ψ(r, t)

)
, (16)

that does not explicitly contain the interaction terms. Otherwise this formula is invalid and its
use would lead to errors as mentioned earlier. The proof of the above theorem though lengthy
follows the same essential steps as standard texts [16]. Without it, the usual wavefunction
matching technique for the determination of the current through the transmission or reflection
coefficients becomes inoperative. Note also that the unitarity condition equation (15) in energy
space has features that are similar to the inelastic terms in the Schrödinger equation. This
implies a close coupling between unitarity and inelastic scattering not present in ordinary
time-dependent tunnelling processes that are not history dependent [17]. History dependence
in the dynamical image problem appears to have been first brought to light in the early works
of Mills [15]. In addition there are self-consistency issues, since the source of the potentials is
due to the tunnelling particle itself; see later. Together these extraordinary features make the
quantum tunnelling of a surface electron one of the most challenging problems in theoretical
physics.

3. Working approximations

At this stage we shall, with some justification that has to be verified post hoc, ignore the
inelastic terms. For the tunnelling systems we shall consider, the energy loss is assumed to
be very small, and tunnelling is assumed to occur over a very narrow energy range, so that

1(x,K, E − E ′) is sharply peaked about E ′ = E . In this case the energy states are quasi-
stationary. One can include a small imaginary lifetime to account for some energy loss. This
is a quasi-particle description. The theory is then expected to be accurate only if this loss
is small in some sense. One criterion is that this loss must be small compared to the total
work done by the electron in being moved from the surface to the detector. According to
recent studies, for sufficiently fast electrons, the total work done can be computed within the
framework of classical electrodynamics [10, 12–14]. For slow electrons as in field emission
the situation is not so clear. Indeed it is to be expected that near to the field emission threshold
(where F = Fc ≈ 1 V µm−1 for the carbon graphite systems) the energy losses will have a
larger influence. As such, an accurate study of the threshold behaviour may require extensions
beyond the present work.

3.1. Basic equations

Within the quasi-stationary approximation we derive the Schrödinger equation in energy space
which forms the basis of our work throughout this paper:

Eψ(x,K, E) =
(

− h̄2

2m

∂2

∂x2
+

h̄2 K 2

2m

)
ψ(x,K, E) + V0(x)ψ(x,K, E)

− e

2

∫
dK′

(2π)2

̃>

I (x,K − K′, E)ψ(x,K′, E), (17)
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where the image potential 
̃>
I now absorbs all the energy diagonal terms and with the

wavefunctions in real space and time being real, ignoring the small exponentially decaying
parts as required by the quasi-stationary description. In view of the reality of all functions in real
space and time, all complex quantities in energy momentum space, especially equation (17),
must satisfy the symmetry property equation (14), which implies that all real parts are even
functions of energy while imaginary parts are odd. Equation (17) makes contact with earlier
workers dating back to Jonson [8]. Jonson and other later workers [18–20] used approximate
self-energies which do not satisfy the above symmetry property equation (14). Therefore their
theories cannot be accurate for the calculation of the tunnelling current in view of the unitarity
issues discussed above, even though the real part of the resultant complex image potential they
derive reduces to the classical image form in the appropriate limit. In view of the recently
reported successful energy loss measurements due to image interaction in the photoemission of
copper, our studies should motivate a careful re-examination of some of the above issues [21].
However, we shall not tackle these fundamental problems in the present work. Instead we
shall accept the quasi-stationary approach, which in turn justifies a classical electrodynamic
description of the image potential 
̃>

I (r, t) which we shall treat in the usual way. We remind
the reader that this is not a proof but a working hypothesis. Indeed it is clear that a canonical
quantization of the theory thus presented will not produce the full many-body quantum features
inherent in the problem. In particular it cannot be justified by showing that the image potential
reduces to the classical value alone. Its usefulness can only be judged by its agreement with
experiments and whereupon it should motivate further deeper analysis of the quantum features.

Thus we start with a Poisson equation for the image field, assuming that the electron is
emitted at time t = 0:

∇2
>(r, t) = e

ε0
|ψ(r, t)|2 for x > 0 (18)

∇ · [Ê∇′
<(r′, t ′)] = 0 for x < 0, (19)

where 
> = 
>
0 + 
>

I and 
< = 
<
0 + 
<

I define the classical image potentials with 
0

representing the bare Laplace potential, which satisfies ∇2
0 = 0. We have now removed the
tilde on all the potentials since from what was said above their connection with the quantum
self-energies is no longer straightforward, i.e. we equate 
̃>

I with 
>
I by hypothesis. The

operator Ê is the generally space time dispersive permittivity integral operator [22]:

Ê f (r′, t ′) =
∫

dr′
∫ t

−∞
dt ′ ε(r, r′, t − t ′) f (r′, t ′), (20)

acting on an arbitrary real function f . Equations (18)–(20) formally complete the definition
of the tunnelling problem posed by equations (2), with the dielectric function as external input.

3.2. Underlying limitations

At this stage we pause to consider a few limitations that are already apparent in this approach.
First, the theory is only as good as the input dielectric function. Early work has shown that,
for metals, with plasmon frequencies of order f ∼ 106 GHz, quantum corrections due to
electron–surface plasmon interactions become operative at xs = (h̄/(2mωs))

1/2 ∼ 1 Å [23].
Second, the semi-classical treatment of the electromagnetic field fails if the field strength is
too weak. The fundamental criterion is set by quantum electrodynamics which determines
a distance xQED = 4.35 × 108/ fs nm GHz−1 ∼ 435 nm [24] where quantum corrections
are unavoidable. These distances (see table 1) set the scale for the appropriate information that
the semi-classical dielectric function must contain in order to provide an accurate description
of the image potentials and therefore tunnelling. Fortunately, for lower plasmon frequencies,
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Table 1. Estimated distance range from the surface where quantum corrections become significant.
For x < xs, quantum corrections are due to electron–surface plasmon interactions; for x > xQED,
quantum corrections are due to quantum electrodynamics.

f (Hz) xs (nm) xQED (nm)

1016 0.0306 43.5
1015 0.097 435
1014 0.306 4350
1013 0.970 4.35 × 104

1012 3.06 4.35 × 105

the latter criterion for xQ is more relaxed and becomes irrelevant. This is in agreement with the
insignificance of retardation corrections to the image 1/x potential in contrast to the Casimir–
Polder case [15, 25]. Unfortunately, the former criterion for xs does not diminish in significance,
for f ∼ 103 GHz, xs ∼ 3.06 nm while xQED ∼ 4.35 × 105 nm. However, the xs values seem
unreasonable at both ends of the frequency scale, and this is probably due to the simplicity
of the model [23]. In fact we shall identify xs with x0 of our earlier work (see equation (41)
of [1]) since in a more sophisticated model this is the distance where the electron–surface
plasmon interactions start to modify the 1/x potential. Fortunately again, for tunnelling rates
and especially for an enhanced potential, it is the wavefunction in the asymptotic (large x)
region that determines the tunnelling probability, as we have seen in [1] and above. The
close region is responsible for inelastic losses, which our theory can poorly describe at this
stage. In the case of strong non-linear coupling, a single-valued externally input dielectric
function, such as the bulk dielectric function as commonly used in linear response–surface
plasmon theory, is unlikely to be adequate. This is where most of our work must first be
focused. Even without considering this problem, equation (17) and equations (18)–(20) form
a formidable self-consistent set at this level for the current source depends on the electron
wavefunction as mentioned. An approximation using the classical point particle approach is
close to being poor. For field emission the emitted particles have de Broglie wavelengths of
the order of ∼10 Å (KE < 0.25 eV), whereas for EELs and for photo-emission these are of
order <2.5 Å (KE > 5 eV) or less. The former is comparable to the width of the tunnelling
surface region and thus the point charge model is close to its limit of validity. As we shall
see below, there are non-linear susceptibility effects that come into play as well which we will
need to consider for the carbon–graphite systems. Self-consistency of the dielectric function
for strong non-linear coupling will then also become an issue that we will discuss later.

Before doing so we shall first recover the usual results from equation (17) by employing the
point particle and slow particle approximations as well as a specular scattering assumption. The
latter assumes that the magnitude of K remains constant during the tunnelling process. Since
E is constant for quasi-stationary states then this means in particular that the x-component
energy W (see [1] equation (13)):

W = E − h̄2 K 2

2m
, (21)

remains constant. This implies that the main scattering events are defined by the edges of the
specular cone, where incident and scattered particles make the same angles with the x-axis; see
figure 1. Furthermore, if the charge density of the tunnelling electron is spherically symmetric
(as it will be for the point particle limit) and the dielectric function has azimuthal symmetry
about the x-axis, then all functions of K can be replaced by their moduli. In particular, with
specular scattering the wavefunction satisfies

ψ(x,K − Q, E) = ψ(x, |K − Q|, E) = ψ(x, |K|, E) = ψ(x, K ). (22)
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y–z surface plane

incident electron

z

Figure 1. This figure illustrates the main specular scattering assumption in field emission where
an incident electron is scattered by the surface plane (y–z) shown bold. In the quasi-stationary
approximation these are the main events since E is constant, in which case so is the magnitude of K
and thus the incident and scattered angles with the x-axis are identical. The scattered events are thus
defined by the edge of specular cones (shaded), one for transmission and one for reflection. The
dashed line shows the main specular reflection events central to surface plasmon theory [26, 28].
Note that for off-specular scattering, even with constant E , the magnitude K and therefore also
the energy W (see equation (21)) are no longer conserved, in which case one has to revert to
equation (17).

In this case, the Schrödinger equation (17) simplifies to:

Eψ(x, K , E) =
(

− h̄2

2m

∂2

∂x2
+

h̄2 K 2

2m

)
ψ(x, K , E) + V0(x)ψ(x, K , E)

− e

4πε0
ψ(x, K , E)

∫ ∞

0
QdQ
>

I (x, Q, E). (23)

An evaluation of the integral using the static dielectric function for a metal returns the classical
image term: −e2/(16πε0x), which forms the basis for the traditional Fowler–Nordheim
theory [2, 3]. We will not reproduce this result here since it will follow in the course of our
studies below. The reader should note that the above quasi-stationary and intrinsic specular
scattering assumptions have been obscure in the history of field emission theory for the last
72 years and should now be included in updates of all modern texts, such as Modinos [27].

3.3. Key results

We shall retain specular scattering and allow for a charge distribution for the electron. For
a dielectric, the induced potential can now be obtained by solving the appropriate boundary
value problem [13, 26]. In this case the induced image potential can be written down as:


>
I (x,Q, ω) = ρωQ

e−Qx

κ(Q, ω)
, κ(Q, ω) = ε̄(Q, ω) + 1

ε̄(Q, ω)− 1
, (24)

where we have absorbed ε0 in the definition of ε̄ (for convenience) which is now dimensionless,
and also reverted to the usual frequency notation3, where ω = (E + µ)/h̄. Furthermore, we

3 The reader should note that to relate this frequency scale to surface plasmons requires an order unity constant which
for 3D plasmons has the form ωs/µ = 0.6652

√
rs/a0. However, its accurate value is not straightforward (see remarks

at the end of section 4).
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have:

ρωQ =
∫ ∞

−∞
dx

e−Q|x|

2Q
ρ(x,Q, ω); (25)

in which ρ(x,Q, ω) is the inverse partial Fourier transform of the probability density:

ρ(x,Q, ω) =
∫

dR
∫ ∞

−∞
dt eiωt e−iQ·R|ψ(x,R, t)|2. (26)

Equation (26) shows that for spherically symmetric charge distributions, ρωQ = ρω|Q| = ρωQ

is also spherically symmetric in K space. Further approximations are necessary to make
progress, such as the static charge, in which ρωQ is replaced by its static value ρ0Q . We shall
particularly be interested in the approximations that recover the classic Fowler–Nordheim case
as a reference point before any more sophisticated work, and as we shall see, it is not the case
of just a static charge.

Equation (24) contains the assumption of linear response and a quasi-classical bulk
dielectric function ε(q, ω)with q = (q,Q) for defining the averaged surface dielectric function
ε̄(Q, ω):

1

ε̄(Q, ω)
= 2

π

∫ ∞

0
dq

1

ε(q, ω)
Q

(Q2 + q2)
. (27)

Equations (24)–(27) are highly non-trivial results. Equation (27) dates back to early surface
plasmon theory [28]. In fact a more sophisticated average than equation (27) is also available
within RPA theory involving the full off-diagonal dielectric matrix E(q, q ′,Q) due to the early
works of Newns [29]. The latter will be important when off-specular scattering is considered
even within the present quasi-stationary approach. The derivations simplify considerably if
the spatial dispersion in the bulk dielectric function can be neglected, i.e. ε(q, ω) ≈ ε(ω), in
which case the Q dependence drops out of our previously defined κ function equation (24);
see also equations (48) and (49) of [1]. However, we shall include anisotropy, which is likely
to be important for systems such as CNTs. In this case the generalization is straightforward;
see for example Mele [30].

κ(ω) =
√
ε̄x(ω)ε̄r (ω) + 1√
ε̄x(ω)ε̄r (ω)− 1

. (28)

In equation (28) we have allowed for the anisotropy in the dielectric functions by assuming only
two non-vanishing principal diagonal components for the permittivity tensor: E = (εx, εr , εr ).
Spatial dispersion can be ignored to a certain extent if the wavelengths of electromagnetic
fluctuations are much larger than the spatial region under consideration. We shall do so from
now on for convenience, but this should not be taken as obvious, especially when we need
to consider the non-linear susceptibility terms. For now, we remark that it is the vanishing
of κ(ω) close to the surface resonant mode ωs that gives the potential enhancement which
stimulates tunnelling. This is an image-induced resonant tunnelling phenomenon that seems
to be unique to carbon–graphite systems. The above mathematical results provide a more
quantitative statement of the discussions presented earlier in [1].

3.4. The limit of no spatial dispersion

We now specialize to the case in which spatial dispersion in κ(ω) can be neglected, as well as
spherically symmetric s-state wavefunctions only. Then the integral in equation (23) is∫ ∞

0
Q dQ
>

I (x, Q, E) =
∫ ∞

−∞
dt eiωt

∫ ∞

0
2πR dR

∫ ∞

−∞
dx ′ |ψ(√x ′2 + R2, t)|2

2κ(ω)
√
(x + |x ′|)2 + R2

. (29)
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As discussed earlier, various approximations are necessary to make progress. We will not be
able to examine all of these in this work but shall merely focus on the (a) point-particle and
(b) instantaneous-tunnelling approximation which consists of

2πR|ψ(
√

x ′2 + R2, t)|2 = δ(x ′ − x)δ(R)δ(t − t0), (30)

where t0 is the notorious tunnelling transit time, which is a subject of some contention for the
last decade [31]. Using the approximation equation (30), then equation (29) becomes:∫ ∞

0
Q dQ
>

I (x, Q, E) = eiωt0

4xκ(ω)
≈ 1

4xκ(ω)
, (31)

where the last step invokes the instantaneous-tunnelling approximation, whereby ωt0 	 1
is assumed. Note that this approximation violates the uncertainty principle, indicating that
quantum processes during tunnelling have been ignored. The latter is nevertheless consistent
with our quasi-stationary approximation. The further substitution of κ(ω)= κ(0), i.e. the static
susceptibility, constitutes the Fowler–Nordheim approximation. Without digressing further we
note in passing that other approximations are possible and remain to be studied in detail, such
as the fast particle, instantaneous-tunnelling approximation, in which [13]:

2πR|ψ(
√

x ′2 + R2, t)|2 = δ(x ′ − vFt)δ(R)�(t − t0). (32)

Instantaneous tunnelling is another intrinsic assumption of Fowler–Nordheim theory which
we have adopted as well, but without the static κ assumption. It clarifies intuitive arguments
of Sze [32] and used by us [1], which suggests that our earlier 3000 Å estimate is grossly
underestimated. At this stage we have essentially recovered all our previous results in [1], in
terms of the Nordheim–MacColl tunnelling model, except for the field dependence. Before we
address the issue of the field dependence of the tunnelling, let us summarize the main results
obtained thus far.

3.5. Interim summary

The approximations are (a) quasi-stationary states, (b) specular scattering, (c) instantaneous-
tunnelling, and (d) point particle. In this case equation (23) now takes the form (see also
equation (27) of [1]):

Eψ =
(

− h̄2

2m

∂2

∂x2
+

h̄2 K 2

2m
+ V0(x)− e2

16πε0κ(ω)x

)
ψ, (33)

where againω = (E +µ)/h̄ and we have now suppressed the arguments ofψ = ψ(x, K , E) for
convenience. Theoretically, when the electron energy E hits the surface plasmon resonance,
ω = ωs, where κ(ωs) = 0 or alternatively ε̄(ωs) = √

ε̄x(ωs)ε̄r (ωs) = −1, then resonance
tunnelling occurs and the image term dominates. We assume this is what happens in carbon–
graphite field emitters. This was the scenario proposed in [1] in which the tunnelling current
has already been calculated in the point particle approximation. Thus we have established the
first criterion which appears to be fulfilled by carbon–graphite systems that makes enhanced
field emission possible, that is their nano-structure enables a Fermi-energy level that is very
close to the surface-plasmon resonant mode ωs. This criterion alone is not sufficient though.
For the proximity of the Fermi level to ωs is measured by a resonance width�ω which in turn
is characterized by an analogous Q factor: Qf (see below). Thus in practice two related issues
need to be addressed. We shall do this in the next section.
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4. Resonance and damping

The resonance is damped in any realistic system and thus there is only a narrow energy range
by which resonance tunnelling can occur—this is in fact related to the ϑ electron concept
proposed in [1]. The damping must be slow enough, at least much slower than the tunnelling
period, in order for the enhanced potential to be effective in stimulating tunnelling. The latter
issue is a complicated one; it involves going beyond the instantaneous tunnelling approach and
may also involve velocity dependence and possibly other quantum effects. Unfortunately not
enough is known on this issue at this stage for us to provide any more illuminating answers.
Hence, apart from directing the interested reader to some related works [15, 13, 33] (which
are mostly classical in their treatment), we shall have to postpone this interesting question at
present. Even at an elementary level, discrepancies between the standard text-book model
of relaxation has been a subject of some contention [34, 35]. We shall assume that whatever
extra conditions are imposed by the above factors, they are satisfied as long as the damping is
slow enough, since the tunnelling time across a layer of a few angstroms is likely to be in the
femtosecond range or less for vF ∼ 107 cm s−1, as estimated earlier in [1]. In this case we can
estimate the damping by the use of a Drude-type formula for the dielectric function, assuming
an isotropic model ε̄x = ε̄r for convenience:

ε̄(ω) = 1 − ω2
p

ω(ω + i�)
� = 1/τ, (34)

where τ is the Drude relaxation time. From equation (33), the effective dynamical Schottky
barrier can be easily shown to be (see also equation (8) of [1]):

�φ(ω) = e

√
eF

4πε0κ(ω)
= ϕ

√
F

Fbκ(ω)
(eV). (35)

Here we have Fb = 694ϕ2 eV−2 V µm−1 (see equation (9) of [1]) as before. In the quasi-
stationary approximation, only the real part of κ(ω) is relevant to the tunnelling Hamiltonian.
It is then straightforward to derive the criterion:

Re

√
F

Fbκ(ω)
=

√
F

Fb

[(
ω2

s

�2 + 4(�ω)2

)1/4( ±�ω√
�2 + 4(�ω)2

+
1

2

)1/2]
� 1, (36)

where �ω is a resonance half-width at ωs in which the latter is given by ε̄(ωs) = −1. The
limiting case of 2�ω 
 � is the important one, in which case �ω > 0 is required. Both
inequalities imply that the resonance is asymmetrical and it occurs just below the Fermi level
and not above, a result that was in fact used in our earlier work; see for example equation (43)
and (44) in [1]. We can now define a relevant Qf = ωs

2�ω which must be high as to be expected
at the initial threshold fields, which requires:

Qf � Fb/F. (37)

The above formula implies that Qf � 103 for a work function of ϕ = 2 eV at an onset field
F = F0 ≈ 2.78 V µm−1. From the above results we obtain a limit on the relaxation time
�−1 of about 2 ps or longer for plasmon frequencies of order 2 × 1014 Hz or 200 THz. In
classical plasmon theory, this would correspond to an electron density of one or two electrons
per nm3, which can be expected from free electrons on the surface nanostructure. However,
this estimate must be crude, in view of the highly non-linear and field-dependent nature of our
problem (see also the extra ω0 parameter to be introduced in section 5).

The opposite limiting case of 2�ω 	 � occurs for most metals in which �−1 � 10−14 s,
and plasmon frequencies are of order 1015 Hz or more, then the criterion equation (36) fails
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and the resonance is too damped to be effective unless the field is increased by at least two
orders of magnitude to F0 = 100 V µm−1. However, at such large fields the field dependence
of the damping factor � cannot be neglected (it is known to follow roughly an F2 law), thereby
making the criterion impossible to satisfy.

It is to be noted that the above discussions will not be able to provide very accurate
estimates for the number of available electrons (dubbed ϑ electrons in [1]), which is highly
dependent on the line shape of the resonance. The latter is dependent on a number of factors,
including the non-linear susceptibility; see the following section. The reader might like to know
that the value of Qf ∼ 103 is not by any means exceptional in terms of modern electronics
where quartz crystals of Qf � 104 are readily fabricated. Presumably once the various Qf

controlling parameters are identified with suitable models, there will be new opportunities for
nano-engineering of the surfaces of these materials for various applications not necessarily
connected with field emission. As with all resonance phenomena, the interplay between
damping and resonance is crucial and must be better understood. An under-damped system
would make tuning impossible while an over-damped system will not resonate. For this reason
we are motivated to move forward with further investigations of some preliminary models.

5. Non-linear susceptibility

We now show that we can obtain essentially the same results directly by considering the non-
linear susceptibility. This reinforces the intuitive ideas of [1]. For in the limiting case where
2�ω 
 �, i.e. when collision relaxation processes are no longer dominant, the non-linear
second-order or higher-order electromagnetic processes come into play. Owing to the loss of
inversion symmetry, the first non-linear term in the permittivity is indeed the quadratic term
as mentioned in [1]. We express this in the standard form [37, 38]:

Di (ω = ω1 + ω2) = εi j(ω)E j(ω) + γi jk(ω1, ω2)E j(ω1)Ek(ω2), (38)

where we have ignored spatial dispersion. The third rank tensor γi jk(ω, ω
′) provides harmonic

mixing and hence the optical rectification which has recently been observed to be anomalously
large in carbon–graphite systems [36]. The inclusion of γi jk(ω, ω

′) in equation (19) couples
the dynamic field with the static field ω′ = 0. This is because field penetration is unavoidable
in any realistic model. Indeed early calculations using an electron gas slab show that any
external source field penetrates the surface to a depth of order d = k−1

F with an initial linear
fall in the potential followed by an exponential tail with the classic Friedel oscillations [29].
For a dielectric we shall adopt a simpler linear field model to a depth of d = k−1

F ∼ 7 Å
which is adequate for our purpose. Note that its value eFd ∼ 10−2 eV has little effect on the
work function ϕ, whose value is 2 eV or more. Its main effect is to create a dynamical surface
charge density that couples both dynamic and static fields at the interface. By including the
second-order susceptibility as defined by equation (38), and after some lengthy calculations
which we shall omit here, equation (19) in our partial Fourier space is now modified to:[(
ε̄x(ω) + 2

γ (ω)

ε̄x0
F

)
∂2

∂x2
− ε̄r (ω)K

2

]

<(x,K, ω) = −2

γ (ω)

ε̄x0
Fδ(x)

∂
<(x,K, ω)
∂x

, (39)

where ε̄x0 = limω→0 ε̄x(ω) is the static x-component of the dielectric constant. Here we have
assumed that only a single non-vanishing component of the non-linear third rank permittivity
tensor dominates, namely γxxx (ω, ω

′) = γ (ω), with all other components vanishing. This
assumption can be justified by the fact that the other diagonal components, namely γyyy(ω, ω

′)
and γzzz(ω, ω

′), vanish by symmetry, whereas off-diagonal components lead to higher-order
K dependence that cannot be considered in isolation from spatial dispersion. Equation (39)
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must be supplemented with appropriate boundary conditions that require the continuity of 

and Dx , where the latter now takes the form:(

ε̄x(ω) + 2
γ (ω)

ε̄x0
F

)
∂

∂x

<(x,K, ω)x=0 = ∂

∂x

>(x,K, ω)x=0. (40)

For zero non-linearity (γ (ω) = 0), the problem reduces to the linear case as required. It is here
that carbon–graphite systems differ from conventional metals,where evidence for anomalously
large values of non-linear coefficients have been reported [36]. The effect of a finite γ (ω) is
to modify equation (28) to the form:

κ(ω) = (ε̄r (ω)αF (ω))
1/2 + 1

(ε̄r (ω)αF (ω))1/2 − 1
, αF (ω) = ε̄x(ω) + 2

γ (ω)

ε̄x0
F. (41)

Equation (41) underscores the non-linear dynamical image enhancement that sets apart the
carbon–graphite systems. As before this can be analysed in the context of the Drude model
equation (34). We will only study this at the peak of the resonance here, since we do
not have a model for γ (ω) at this stage (see the next section), which in the relevant limit
1 
 γ (ωs)F 
 2�/ωs shows that the enhancement factor

1

κ(ωs)
∼ 1 − 2

γ (ωs)F
+ 4i

�

ωsγ (ωs)2 F2
. (42)

Here we have again used the Drude model for ε̄(ω), specializing to the isotropic case for
convenience. Once again only the real part is relevant for the quasi-stationary approximation
while the imaginary part is vanishingly small in the limit γ (ωs)F 
 2�/ωs in any case.
Comparing the second term to the results of the previous section we now have the important
relation:

|γ (ωs)| � 2/Fb, (V/µm)−1 (43)

which replaces the previous criterion equation (36) at resonance. Note again that in the limit
discussed, i.e. when collision times are not dominant, the criterion and equation (42) require
that γ (ωs) must be negative. Its interpretation will be shown in the next section. We should
remark that such a non-linear property may not be able to exist in isolation. Indeed if the
coupling becomes large, the choice of an external input dielectric function even with optical
non-linearity included needs to be re-examined from the point of view of self-consistency.
Before doing so we should investigate by the use of a simple microscopic model how our
various parameters (in particular γ ) can be related to microscopic parameters.

6. Non-linear susceptibilities and the Duffing oscillator model

The subject of non-linear susceptibilities is often treated by the use of simple text-book type
models. This is in fact a useful approach before considering any detailed microscopic quantum
models, since many of the features due to non-linear behaviour at the classical level can already
be captured by such models. Indeed considerable advantages can be gained by doing so, since
many interesting features peculiar to non-linear systems, such as limit cycles, bifurcation,
period doubling and chaos, are nowadays understood to contain universal features that can be
treated by renormalization group theory. The well known driven Duffing oscillator is a case
in point:

ẍ + �ẋ + ω2
0 x + ax2 + bx3 = e

m
F . (44)

We shall consider N such independent oscillators as a model for the surface plasmon modes
and without loss of generality confine our discussions to the one-dimensional case for the
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moment. To simplify the algebra further we shall ignore the quartic anharmonicity term and
retain the cubic term only, since a stability analysis of the solutions is not our objective at this
stage. By considering the driven field to contain two Fourier components only, i.e.

F = E1e−iω1 t + E2e−iω2 t + c.c., (45)

standard perturbation analysis can be used to expand the electric polarization in terms of the
higher-order non-linear susceptibilities:

P(t) = Nex(t) = χ(1)(ω1)E1 + χ(1)(ω2)E2

+ χ(2)(ω1 ± ω2)E1 E2 + χ(2)(ω1)E
2
1 + χ(2)(ω2)E

2
2

+ χ(2)1 (0)E2
1 + χ(2)2 (0)E2

2 + c.c., (46)

where the last two terms are the well known optical rectification terms [36, 38, 39] and we have
suppressed the time-dependent exponential factors for brevity. The result of such an analysis
gives the following expressions for the various linear and non-linear susceptibilities as [39]:

χ(1)(ω�) = ω2
p

ω2
0 − ω2

� − iω��
, ω2

p = Ne2

ε0m
for � = 1, 2. (47)

For ω0 = 0 (pure plasmon mode) the above yields the standard Drude formula equation (34),
but as we shall see later ω0 is finite and does have a significant role. We present the following
non-linear susceptibility formulae, bearing in mind that we are only working to cubic non-
linearity, i.e. a �= 0, b = 0:

χ(2)(ω1 ± ω2) = − 2(ae/m)ω2
p

(ω2
0 − ω2

1 − iω1�)(ω
2
0 − ω2

2 ∓ iω2�)(ω
2
0 − (ω1 ± ω2)2 + i(ω1 ± ω2)�)

.

(48)

This is the sub-harmonic mixing term which is of most concern to us. We include the other
terms for completeness, since they are known to be of significance in other areas outside field
emission:

χ(2)(2ω�) = − (ae/m)ω2
p

(ω2
0 − ω2

� − iω��)(ω2
0 − 4ω2

� − i2ω��)
for � = 1, 2, (49)

which is the second harmonic mixing term, and finally:

χ
(2)
1 (0) = − (ae/m)ω2

p

ω2
0(ω

2
0 − ω2

1 − iω1�)
, (50)

and

χ
(2)
2 (0) = − (ae/m)ω2

p

ω2
0(ω

2
0 − ω2

2 − iω2�)
, (51)

are the optical rectification terms.
Now we come back to the matters at hand and concentrate on equations (47) and (48).

Equation (47) shows that the surface plasmon resonance is affected by ω0:

ω2
s = ω2

0 +
ω2

p

2
, (52)

whose origin lies outside classical plasmon theory. Equation (48) shows that the second-
order non-linear coefficient γ (ω) defined in the previous section can be related to the cubic
anharmonicity parameter a via

γ (ω) = lim
ω2→0

χ(2)(ω ± ω2) = − (2ae/m)ω2
p

ω2
0[(ω2

0 − ω2)2 + ω2�2]
. (53)
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Note that this quantity is real (hence its effect on the resonance is non-dissipative) and in the
limit of ωp 
 ω0 and small damping ωp 
 �, reduces to the important result:

γ (ωs) = − 2ae

mω2
0ω

2
p

. (54)

First of all, a negative value of γ (ωs) at resonance (see previous section) implies a positive value
of a i.e. a symmetrical hard spring ensues. For a negative a this would be an asymmetrical
spring, soft for x > 0 and hard for x < 0, which is not our case. Second, note that our
perturbation method fails in the limit ω0 → 0, implying that it has a critical role to play.
We are led therefore to conclude that the surface plasmon mode of relevance to our previous
discussions is not a pure plasmon mode. We can estimate the ratio a/ω2

0 from the value
of Fb via equation (43) with the usual work function of 2 eV and a plasmon frequency of
1014 Hz. This gives a/ω2

0 ≈ 7.9 × 106 cm−1, indicating that for nanometre size oscillations,
the non-linear terms are already too large to justify a perturbation analysis. More sophisticated
methods of non-linear analysis are available starting from standard textbook techniques [40].
However, this will not alter the general picture of the surface plasmon mode resonance and
damping characteristics presented here except in detail, bearing in mind that neither periodic
nor aperiodic solutions are of main interest to us, but rather the transient short time behaviour
at resonance.

To conclude the present studies we must come back to the issue of the self-consistency of
the dielectric function. The strong non-linear coupling indicated by the above studies requires
that we must develop some method of assessing the significance of other underlying non-linear
many-body effects that this study entails. This we shall do in the next section.

7. Dielectric function—self-consistency

Our main purpose here is to describe the underlying many-body physics. For clarity, we
shall suppress all indices and arguments unless essential to avoid ambiguity. In section 2,
we have highlighted the important role played by the exact single particle self-energies � of
the tunnelling electron in determining the image potentials, and thus tunnelling probabilities.
Bearing in mind that all our quantities are dependent on the applied external field F , these
self-energies are in fact related to the dielectric function E via the many-body expression that
is a generalization of the RPA result [41]:

�(k) = − 1

L2d

∑
q,iqn

υq

β

G(k + q)

E(q)
, β = 1

kBT
. (55)

Here the sum is over all momentum q and Matsubara frequencies iqn = i(2n+1)π/β, with k and
q being symbolic four-dimensional quantities, L2 being the planar area and d an appropriate
slab width. The quantityυq is the appropriate Fourier component of the bare Coulomb potential
while G is an appropriate single particle Green function, and for the first time in this paper we
are bringing temperature into play. The appropriate Green function will be the non-interacting
free particle Green function G0 in the case of an electron gas model but will be given by
an appropriate Dyson equation if other degrees of freedom are involved, as the presence of
a finite ω0 in the last section seems to imply. If equation (55) were to be exact, not only
must G be exact, but the exact dielectric function E must also be self-consistent with �, for
conversely by inversion, equation (55) can also be used to obtain E , if instead �(k) were
the given quantity. In view of the strong non-linear coupling discussed previously, some
handle on this self-consistency issue is important. The reason is that a priori we do not know
if this self-consistency correction to the externally input E that we have been using so far
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(we emphasize that here we have included all non-linear field dependence in E as well) will
lead to a stronger or a weaker non-linear field-dependent damping than the picosecond limit
collision damping that we have been assuming so far. If it is the former then our present theory
will be in trouble. If it is the case of a weaker non-linear field dependent damping, then there
is compelling evidence that we have now essentially pinned down the major ingredients for a
time-dependent field enhanced tunnelling theory for the carbon field emitters.

We begin by recalling that for a generally complex dielectric function at the resonant
frequency ωs, where

εs(ωs)

ε0
= −1 + iε̃s, 0 < ε̃s 	 1, (56)

the enhancement factor κ−1
s of the image potential is related to ε̃s by:

κ−1
s = κ(ωs)

−1 ≈ 1 + i
2

ε̃s
. (57)

In the limit of small ε̃s, the dynamical Schottky barrier is determined by:

Re κs
−1/2 → ε̃−1/2

s , (58)

irrespective of the underlying origin of the complex term. We have learnt that the surface mode
damping term at the resonant frequency given by ε̃s actually determines the effectiveness of
the potential enhancement, since an absolute zero value of ε̃s is unrealistic, which would also
imply a zero line width: an impossible tuning situation. It remains for us to examine the
effect that further non-linear feedback due to the self-consistency in E has on the enhancement
factor, as its effect is dissipative and potentially harmful. The approach is not to attempt to
solve the problem from first principles. Rather we shall consider a one-dimensional fluctuating
barrier model and focus on the relaxation time τ = �−1 which we shall relate to the above
imaginary part ε̃s by the same Drude relation: ε̃s = 2�/ωs; see equation (36). Note that this
relaxation time neglects collision or correlation effects which we have previously identified as
a prerequisite condition for enhanced tunnelling. This philosophy is inspired by related issues
in the quantum theory of diffusion as applied to light interstitials in metals, developed more
than thirty years ago by Flynn and Stoneham [42].

7.1. Fluctuating barrier model

In introducing the model we shall measure all energies with respect to the Fermi level as before.
Then the time-dependent Schrödinger equation is given by:

ih̄
∂ψ(x, t)

∂ t
= − h̄2

2m

∂2ψ(x, t)

∂x2
+ Vf(x, t)ψ(x, t). (59)

Our simplified fluctuating barrier model is defined by the time-dependent confining potential
Vf(x, t):

Vf(x, t) =
{

−µ for x < 0—region 1;

ϕ −�φ(ω)�(t) cos(ωt) for x > 0—region 2,
(60)

where −µ is the bottom of the band, ϕ is the work function, χ = ϕ +µ is the electron affinity,
ω = (E + µ)/h̄ and �φ(ω) is given by equation (35). The latter mimics the fluctuating
potential due to the dynamical Schottky image effect in an applied field and will be treated
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as an impulse perturbation, consistent with instantaneous tunnelling, ωt0 	 1; see the end of
section 3. In the absence of the perturbation, all the bound state wavefunctions are given by:

ψk(x) =




1√
L

sin(kx + δ0) for x < 0—region 1;

1√
L

sin δ0e−k̃x for x > 0—region 2,
(61)

where:

k =
√

2m

h̄2 (E + µ) and k̃ =
√

2m

h̄2 χ − k2, (62)

and the phase shift δ0 is given by:

tan δ0 = −k

k̃
= −

√
E + µ

ϕ − E
. (63)

The unbound state wavefunctions can also be written down, but they are of no relevance to
us and we will not discuss these further here. For this simple model, the exact wavefunctions
�k after the impulse are also known,by simply changing ϕ → ϕ−�φ(ω). Hence, in principle,
the exact transition probability in the impulse approximation can be calculated for this simple
model [43]:

ε̃s = 2

ωsτ
= 2

∑
ki ,kf

∣∣∣∣
∫

dxψki�
∗
kf

∣∣∣∣
2

fki (1 − fkf ), (64)

where now we merely focus on the peak ω = ωs, since off-peak contributions are of higher
order and the Drude relation equation (36) has been assumed. The Fermi factors fk are also
included to ensure transitions only between occupied and empty states. However, a first-order
perturbation calculation suffices, in which case the above expression becomes [43]:

ε̃s = 2
∑
ki ,kf

|�φki ,kf |2
(Eki − Ekf )

2
fki (1 − fkf ), (65)

where we have used a simplified notation in which Ek = E(k) as given by inverting the first
of equation (62). Note that this equation now gives a self-consistency relation, since�φki ,kf is
itself dependent on ε̃s in our model. It is also important to note that for a higher-dimensional
model, in doing the above sum over states, there will also be K dimensional constraints not
present in one dimension. A straightforward evaluation of the matrix elements yields the result:

�φki ,kf = 1

L
�φ(ωs)

sin δ0(k̃i) sin δ0(k̃f)

k̃i + k̃f

. (66)

Using equations (35) and (58) we have the final result:

ε̃2
s = 2ϕ2 F

L2 Fb

∑
ki ,kf

sin2 δ0(k̃i ) sin2 δ0(k̃f)

(Eki − Ekf )
2(k̃i + k̃f)2

fki (1 − fkf ). (67)

The sums are easily converted to integrals using the usual formulae:

1

L

∑
k

→ 1

2π

∫
dk → 1

2π h̄

√
m

2

∫
dE√
ϕ − E

. (68)

Note that there can be no optical transitions (since there are no external energy sources and only
the ϑ electrons are involved in the resonance), so that upon integrating over the ϑ electrons:

ε̃2
s = ϕF

32π2 Fb

∫ 0−

−ϑ
dEi√
ϕ − Ei

∫ ϑ

0+

dEf√
ϕ − Ef

sin2 δ0(Ei) sin2 δ0(Ef)

(Ei − Ef)2
( fEi − fEf ). (69)
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Table 2. Damping time τ in picoseconds from equation (73) as a function of the work function
ϕ (eV) and applied field F V µm−1, with a plasma frequency ωp = 4π × 1014 Hz.

F|ϕ 1 2 3 4 5

1 1.5806 3.1613 4.7419 6.3225 7.9032
5 0.7069 1.4138 2.1206 2.8275 3.5344

10 0.4998 0.9997 1.4995 1.9994 2.4992
15 0.4081 0.8162 1.2244 1.6325 2.0406
20 0.3534 0.7069 1.0603 1.4138 1.7672

For the small range of integration, we have from equation (62):

k̃i + k̃f ≈ 2

√
2mϕ

h̄2 , (70)

and further the difference of the Fermi factors over the energy range can be approximated by
a delta function, so that

( fEi − fEf )

(Ei − Ef)2
→ 1

ϑ
δ(Ei − Ef + ϑ), (71)

while the rest of the integrand changes little over the range of integration. We then arrive at:

ε̃2
s = 1

32π2

F

Fb
sin4 δ0(0) = 1

72π2

F

Fb
, (72)

or alternatively:

ε̃s = 2

ωsτ
= 1

6π

√
F

2Fb
, (73)

which is a weaker damping law and hence not potentially destructive to the enhancement
which goes as κ−1

s ∼ (γ (ωs)F/2)−1 due to the non-linear susceptibility as found earlier. A
numerical estimate for the relaxation time from the Drude relationωsτ = 2/ε̃s gives τ ≈ 1.9 ps
at the onset field, once again with the usual work function of 2 eV and a plasmon frequency of
2 × 1014 Hz, which is comparable to the neglected collision times. In table 2 we provide the
damping times for various work functions and applied fields as calculated from equation (73),
which are all in the range of picoseconds. Note that this (dissipative) feedback mechanism
favours a larger work function, and although the relaxation times decrease slightly with a larger
field, the required Q factor also diminishes as the field F increases according to a faster law,
thus cancelling its negative effect; see equation (37). Higher-order corrections to the field
dependence will need a more involved study, as mentioned also in our earlier work concerning
the current [1].

We emphasize that there is no loss of generality in using a one-dimensional model here.
The extension to higher dimensions within an RPA theory can be obtained by a similar
generalization of the early work of Newns [29], but whose impenetrable barrier model must
be suitably modified as above (see equation (61)). We leave open the question if these higher-
dimensional models will lead to an even weaker power law, i.e. ε̃s ∼ F1/x with x > 2, where
simple phase space arguments suggest that this would be the case. We now turn to a re-
examination of the tunnelling current in the present formalism. This will highlight important
issues and provide contact with our earlier calculations [1].
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8. Tunnelling current

In calculating the tunnelling current we return once again to the key formula given by
equation (16), which as stated earlier is valid as long as the various unitarity and causality
conditions are met. The alert reader will notice that the various wavefunctions and their
derivatives have been written in a specified order for a very good reason. For the fermion
system that satisfy Fermi–Dirac statistics (see assumption 1 in section 1 of our earlier paper [1]),
equation (16) can be immediately transcribed in the second quantization formalism as the time-
dependent current operator:

Ĵ(r, t) = − ieh̄

2m

(
ψ̂†(r, t)∇ψ̂(r, t)− [∇ψ̂†(r, t)]ψ̂(r, t)

)
, (74)

where now the order of the field operators ψ̂(r, t) and ψ̂†(r, t) is extremely important. In view
of our partial Fourier transform definition equation (11), we can write these second quantized
field operators as:

ψ̂(x,R, t) =
∑

K

∫ ∞

−∞
dE

2π h̄
e−iEt/h̄ eiK·RĈKEψ(x,K, E), (75)

and its conjugate:

ψ̂†(x,R, t) =
∑

K

∫ ∞

−∞
dE

2π h̄
eiEt/h̄ e−iK·RĈ†

KEψ
∗(x,K, E); (76)

where ĈKE and Ĉ†
KE are appropriate fermion operators and we have changed the integral over K

to a sum for normalization reasons that will become clear later. Otherwise, the wavefunctions
ψ(x,K, E) satisfy the same Schrödinger equation as before, i.e. equation (12), where no
approximations have yet been made. We now need to address two issues that are important for
the calculation of the current. The first and more trivial issue is the appropriate normalization for
the wavefunctions. Standard practice is to normalize the real space wavefunctionsψ(x,R, t) to
L−3/2, with L a large linear dimension of space, since the integral over all space of |ψ(x,R, t)|2,
taking L → ∞, is unity at all times. From this we can deduce that ψ(x,K, E) is normalized
to:

ψ(x,K, E) ∼ 1√
υ

√
τ0

L2
, (77)

where υ is the incident particle velocity and τ0 is some macroscopic timescale which is of the
order of seconds in our case. Both L and τ0 are taken to infinity at the end of the calculations.
The second harder issue concerns the appropriate anti-commutation relations for the fermion
operators. Without invoking any approximations, all we can say is that, for a fixed energy E ,
the operators ĈKE and Ĉ†

K′ E anti-commute:

{ĈKE , Ĉ†
K′ E } = δK,K′ , (78)

since wavefunctions of different energies E, E ′ are in general non-orthogonal. To resolve this
difficulty would require us to consider double-time or double-energy Green functions. It poses
interesting questions for the calculation of the time dependence of the current or alternatively its
energy distribution, which we will not examine here at present [21]. Fortunately, in calculating
the steady state current these issues do not matter, since then we can average over timescales
that are macroscopic, i.e. of order τ0, and quantities such as:

1

τ0

∫
dt ψ̂†(x,R, t)∇ψ̂(x,R, t) → 1

τ0

∫
dt

∑
K,K′

∫
dE

2π h̄

∫
dE ′

2π h̄

× e−i(K−K′)·Rei(E−E ′)t/h̄ Ĉ†
KE ĈK′ E ′ψ∗(x,K, E)∇ψ(x,K′, E ′), (79)
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leads to an integral over a delta function in E , as a result of the time average. The
thermodynamic averaged current J = 〈Jx 〉 then leads to the formula:

J = − ie

4πmτ0

∫
dE

∑
K

〈n̂K(E)〉
[
ψ∗(x,K, E)

∂ψ(x,K, E)

∂x
− ∂ψ∗(x,K, E)

∂x
ψ(x,K, E)

]
,

(80)

where 〈n̂K(E)〉 = 〈Ĉ†
KE ĈKE 〉 is an equilibrium distribution function, which requires

knowledge of the above-mentioned Green functions. Now assumption 2 in section 1 of our
earlier paper [1] ensures that the equilibrium distribution is undisturbed by the tunnelling
electrons, in which case:

〈n̂K(E)〉 = fK(E) = 1

exp [β(W + h̄2 K 2

2m )] + 1
, β = 1

kBT
. (81)

We now need the quasi-stationary assumption of section 3, by which the wavefunction on the
left region of the barrier (x < 0) can then be written as:

ψ(x,K, E) = 1√
υ

√
τ0

L
(eikx + rK(E)e−ikx ), k =

(
2m(W + µ)

h̄2

)1/2

, (82)

where rK(E) is the reflection amplitude; see also equation (19) of our earlier paper [1], but
note here the K and the E (not W ) dependence of the amplitudes. As we have normalized the
wavefunctions according to equation (77), this gives:

−i

[
ψ∗(x,K, E)

∂ψ(x,K, E)

∂x
− ∂ψ∗(x,K, E)

∂x
ψ(x,K, E)

]

= 2kτ0

υL2
TK(E) = 4πmτ0

h
TK(E), (83)

in which TK(E) = 1 −|rK(E)|2 is the transmission coefficient. The expression for the current
within the quasi-stationary approximation is then:

J = e
∫

dE

L2

∑
K

fK(E)TK(E), (84)

where the sum and the integral cannot be separated without further assumptions. This requires
the specular scattering assumption (see section 3) in which case the energy integral over dE
can be replaced by dW . Also, because TK(E) = T (W ) the expression becomes independent
of K and the final expression for the current is:

J = e
∫

dW N(W )T (W ), (85)

where:

N(W ) = 4πmkBT

h3
ln

{
1 + exp

[
−

(
W

kBT

)]}
, (86)

is the well known supply function; see also equation (6) of our earlier paper [1]. This expression
forms the basis of our earlier work and indeed a lot of other works on field emission, but the
above should clarify the various underlying approximations that have to be invoked to get
there. At this stage we need not repeated all our earlier calculations [1], except to highlight a
few key steps made on the basis of earlier intuitions, which can now be substantiated by what
we have learnt here. First the parameter x0 (see equation (42) of [1]) can now be related to xs in
table 1, which effectively fixes the Q factor in a semi-empirical way. This assumption is now
entirely reasonable since the neglect of inelastic processes during tunnelling (and hence the
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Figure 2. Logarithmic log10 J versus 1/F plot of the emission current in our model for epoxy-
graphite PFE material. The black dots are experimental points from Tuck et al [44]. The solid
curve is our result which is given in equation (88) with |γ (ωs)|Fb/2 = 1; the dotted curves just
above and below have |γ (ωs)|Fb/2 = 2 and 0.5 respectively. The straight line dashed curve is the
FN-JWKB result with a field enhancement factor of 50. J is in units of A cm−2 and F is in units
of V µm−1. The work function ϕ = 2.0 eV, with µ = 0.323 eV and σ = 0.1.

quasi-stationary assumption) underpins the whole theory and is also responsible for the short-
range behaviour of the image potential. We find it very hard to go beyond this approximation
without a microscopic theory that connects x0, the inelastic processes, the resonance criterion
and the quasi-stationary assumption. Finally, the penultimate current expression:

J = meϕ2

2π2h̄3

∫ 0

−δ
T (ϕx)

kBT

ϕ
ln

(
1 + exp

[
− ϕx

kBT

])
dx, (87)

and its subsequent temperature behaviour (see equation (44) in [1]) assumes the one-sided
resonance characteristic of the Drude type model,as mentioned in comments after equation (36)
in section 4 above. It is still unclear what will emerge in a more sophisticated model, where
the temperature dependence of κ(ω) is considered; this is worth further exploration. More
investigations of these questions will be motivated by a closer study of both the temperature
and energy distribution of the emission current in experiments.

For now we can relate the important parameter γ (ωs) (see section 5) to the current J ,
which to leading order is given by:

JCH ≈ cAϕ
−3/2

[ln( cBϕ

(eF)1/2 )]
2

( |γ (ωs)|Fb

2

)3/4√
µ

ϕ
(eF)3 A cm−2, (88)

where the constants are cA = 0.099 24 eV−3/2 µm3 and cB = 51.231 eV−1/2 µm−1/2

respectively (see equation (46) of our earlier paper [1]). Since γ (ωs) is measurable via
THz surface spectroscopy including pump–probe polarization techniques [38], this formula
provides a means to classify and to some extent optimize the emission current of the carbon
surface where the ideal surface would have |γ (ωs)| � 2Fb (see equation (43)). Figure 2
shows the results of this model in comparison with experimental results for an epoxy–graphite
material.

9. Conclusion

The present work provides a more quantitative formulation of the key ideas for dynamically
enhanced resonant tunnelling which sets the carbon field emitters apart from the usual FN theory
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which applies to metals in general. By careful re-examination of the salient features of the time-
dependent Schrödinger equation, we have isolated and clarified the main assumptions in the
dynamical theory; many of these assumptions are already intrinsic to traditional field emission
theory. In principle our theory indicates opportunities for the control of field emission. The
main parameters are the work function ϕ which controls the barrier, the Fermi level, namelyµ
which controls the plasmon frequency,and γ (ωs)which controls the resonance peak. However,
we have found that the anharmonicity of the surface plasmon modes, i.e. anharmonic coefficient
a, and an underlying characteristic frequencyω0, are essential components which, due to their
influence on the non-linear susceptibility γ (ωs), couple both static and dynamic fields. These
are necessary ingredients for a more accurate description of the resonance behaviour. When
other dissipative mechanisms such as collision damping parameter� and non-linear dissipative
feedback (see section 7) are diminished, these parameters make carbon systems different from
traditional metals. Such damping effects set an upper limit for the relaxation time of the order
of picoseconds, a unique feature of carbon-based systems which have high mobilities and
supported by time domain studies of electron–phonon scattering in SWCNTs [45]. Indeed,
since our study merely stopped at the second-order susceptibility, it is possible that, as the field
increases, higher-order susceptibilities come into play,explaining the characteristic break in the
field as found in some CNT systems. In that context, recent suggestions of two-process models,
which are inherently time dependent in their very nature, should be carefully re-examined
using the time-dependent theory as presented here, in view of the neglect of time-dependent
and relaxation processes by the authors [46, 47].

While it will be foolish to think that the present work has completely validated the earlier
phenomenological model [1], the studies here do provide confidence that important physics
concerning dynamical enhancement of tunnelling due to the surface properties of carbon field
emitters has been identified. Further work remains to examine the microscopic properties
alluded to, and experiments should be focused on a more systematic analysis of the resonance
and dynamical current characteristics. In addition to improving field emission, these studies
should provide unique opportunities for the exploitation of non-linear plasmon modes for THz
applications in the range of several hundred THz. With some generalizations, including the
extension to more than one dimension, the present model could make possible the design of
systems with greatly enhanced electron emission, and might even allow control of the emission
direction.
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